Regulation of chondrocyte differentiation level via co-culture with osteoblasts.

نویسندگان

  • Ryusuke Nakaoka
  • Susan X Hsiong
  • David J Mooney
چکیده

The close apposition of osteoblasts and chondrocytes in bone and their interaction during bone development and regeneration suggest that they may each regulate the other's growth and differentiation. In these studies, osteoblasts and chondrocytes were co-cultured in vitro, with both direct and indirect contact. Proliferation of the co-cultured chondrocytes was enhanced using soluble factors produced from the osteoblasts, and the differentiation level of the osteoblasts influenced the differentiation level of the chondrocytes. In addition, the chondrocytes regulated differentiation of the co-cultured osteoblasts using soluble factors and direct contact. These data support the possibility of direct, reciprocal instructive interactions between chondrocytes and osteoblasts in a variety of normal processes and further suggest that it may be necessary to account for this signaling in the regeneration of complex tissues comprising cartilage and mineralized tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro.

Biological integration of cartilage grafts with subchondral bone remains a significant clinical challenge. We hypothesize that interaction between osteoblasts and chondrocytes is important in regenerating the osteochondral interface on tissue-engineered osteochondral grafts. We describe here a sequential co-culturing model which permits cell-cell contact and paracrine interaction between osteob...

متن کامل

Regulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells

Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...

متن کامل

Sonic Hedgehog Regulates Osteoblast Function by Focal Adhesion Kinase Signaling in the Process of Fracture Healing

Several biological studies have indicated that hedgehog signaling plays an important role in osteoblast proliferation and differentiation, and sonic hedgehog (SHH) expression is positively correlated with phosphorylated focal adhesion kinase (FAK) Tyr(397). However, the relationship between them and their role in the process of normal fracture repair has not been clarified yet. Immunohistochemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2006